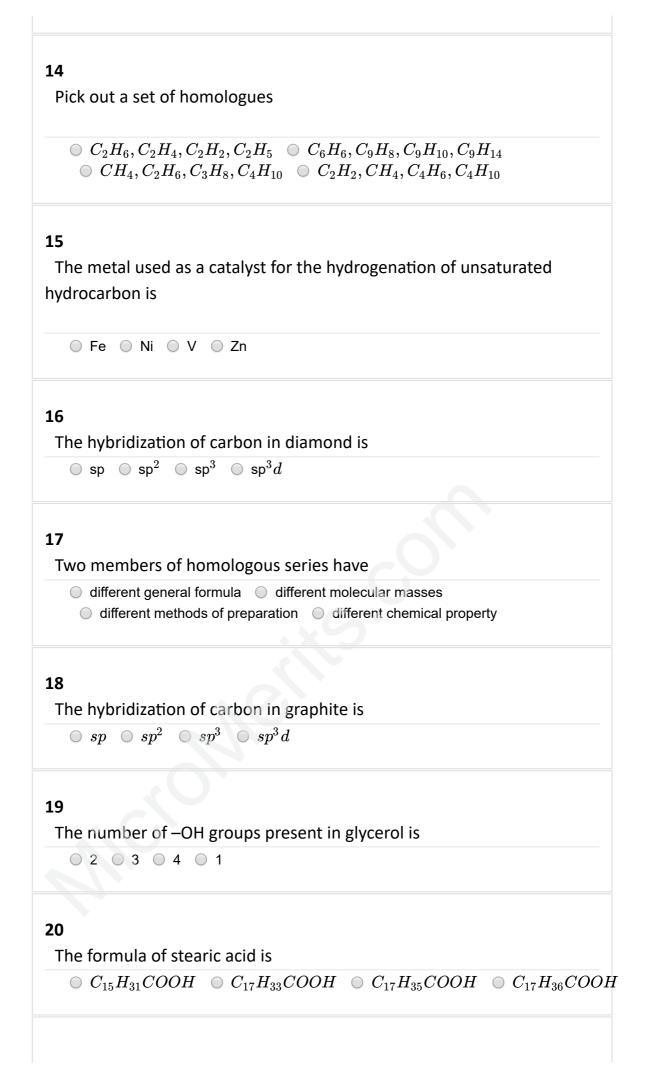
IITJEE Foundation Practice paper


CARBON AND ITS COMPOUNDS

class-10th-Science Number of Questions: 100

For Answers and Solutions, Go to www.micromerits.com

A dilute solution of ethanoic acid in water is called Tincture iodine Absolute alcohol Vinegar Acetic acid
Ethanoic acid is commonly known as Acetylene Carboxylic acid Acetic acid
What property of carbon allows it to form a large number of carbon compounds? O Tetra valency O Catenation O Electro negativity O Electro positivity
The IUPAC name of C_2H_2 is $lacktriangle$ Ethylene $lacktriangle$ Ethyne $lacktriangle$ Ethane
The portion left on dropping a hydrogen from an alkane is called Functional group Alkenyl group Alkyl group Alkynyl group

The general formula of alkanes is
$\bigcirc \ C_n H_{2n} \ \bigcirc \ C_n H_{2n-2} \ \bigcirc \ C_n H_{2n+2} \ \bigcirc \ C_n H_{2n+1}$
7
Which of the following is alkane?
$\bigcirc \ C_4 H_{10} \ \bigcirc \ C_4 H_8 \ \bigcirc \ C_4 H_6 \ \bigcirc \ C_6 H_6$
8
The functional group present in carboxylic acid is
○ - OH ○ - CHO ○ - COOH ○ -CO
9
C_{60} has arranged by x pentagons and y hexagons. The values of x and y are
20, 12 12, 20 21, 20 12, 10
10
Catenation means
 ○ Ability to exhibit tetra valency ○ Isotopy ○ Allotropy ○ Self-linkage
11
Root word for six carbon atoms is
Noot word for six carboff atoms is
O Hept O Sept O Oct O Hex
12
Which of the following contains a double bond?
$\bigcirc C_2H_6 \ \bigcirc C_2H_4 \ \bigcirc C_2H_2 \ \bigcirc C_4H_{10}$
13
An alkane has a molecular formula $C_n H_{14}$. Then the value of 'n' is
\bigcirc 5 \bigcirc 8 \bigcirc 6 \bigcirc 4

Chemically similar compounds having the same functional group but
differing by a ${ ext{-}}CH_2$ group in their molecular formula are known as
 ☐ Isomers ☐ Homologues ☐ Allotropes ☐ Polymers
22
The suffix used for naming an aldehyde is
$\bigcirc -ol \bigcirc -al \bigcirc -$ one $\bigcirc -$ ene
o or o ar o -one o -ene
23
Which of the following is a good conductor of electricity?
○ Charcoal ○ Diamond ○ Graphite ○ Coal
24
The HIDAC names of each damp in
The IUPAC name of acetylene is
○ Ethane ○ Ethyne ○ Ethylene
25
Diamond and graphite are
○ Isomers ○ Allotropes ○ Homologous ○ Metals
130Hers Andropes Tromologous Nictals
26
Hydro carbons containing only single bonds between carbon atoms are
called
○ Alkenes ○ Alkynes ○ Alkanones
27
The process of conversion of starches and sugars to Ethanol is called
Oxidation Reduction Fermentation Distillation
20
The percentage of Ethanol in absolute alcohol is
The percentage of Ethanol in absolute alcohol is
○ 50% ○ 60% ○ 90% ○ 100%

Among the following, the substance that undergoes substitution reaction is

 \bigcirc C_4H_8 \bigcirc C_3H_4 \bigcirc C_4H_{10} \bigcirc C_4H_6

30

The formula of soap is

 $\bigcirc C_{17}H_{35}COOH \bigcirc C_{15}H_{31}COOH \bigcirc C_{17}H_{35}COONa \bigcirc C_{17}H_{33}COOH$

31

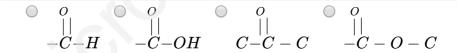
The structure (formula) of pentyne is

$$igoplus CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \ igoplus CH_3 - CH_2 - CH_2 - CH = CH_2 \ igoplus CH_3 - CH_2 - CH_2 - C \equiv CH \ igoplus CH_3 - CH = CH - CH_2 - CH_3$$

32

The difference in the mass between C_2H_4 and C_3H_6 is

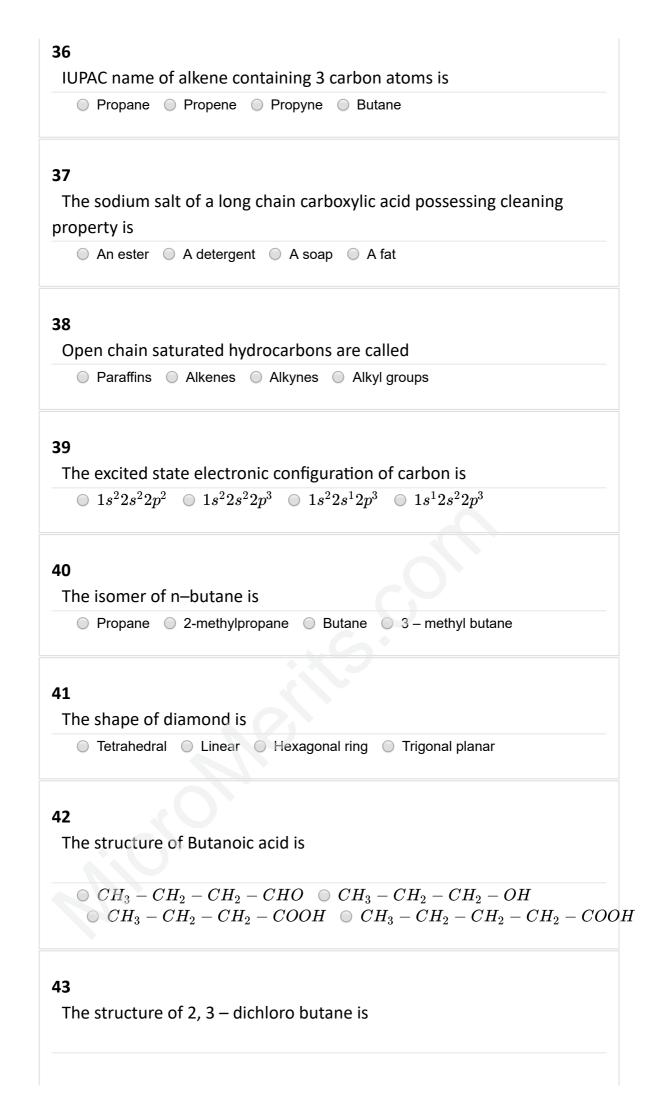
28 0 14 0 12 0 8


33

The general formula of alcohols is

 $\bigcirc \ C_n H_{2n+2} \ ^{-OH} \ \bigcirc \ C_n H_{2n} \ \bigcirc \ C_n H_{2n-2} \ ^{-OH} \ \bigcirc \ C_n H_{2n+1} \ ^{-OH}$

34


The functional group of ketone is

35

The distance between the two layers of graphite is

 \bigcirc 1.54A° \bigcirc 1.42A° \bigcirc 3.35A° \bigcirc 1.20A°

The IUPAC name of $CH_2-CH-CHO$ is $\begin{matrix} | & & | \\ Cl & & Cl \end{matrix}$

- 1, 2 dichloro prapanol2, 3- dichloro propanol2, 3- dichloro propanal
- 1, 2 dichloro propanal

45

The gas liberated when ethanol reacts with sodium is

 $\bigcirc O_2 \bigcirc H_2 \bigcirc CO + H_2 \bigcirc CO_2 + H_2$

46

The functional group of ester is

47

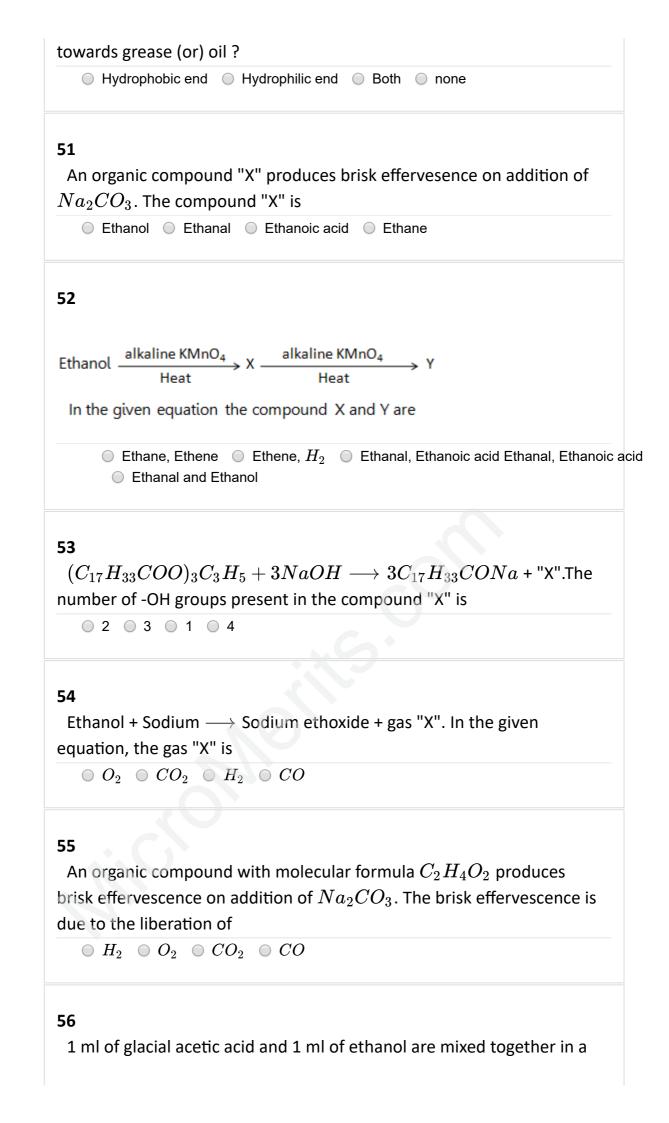
The products formed in the esterification reaction are

igcup Ester and H_2 igcup Ester + O_2 igcup Ester + H_2O igcup Ester + CO_2

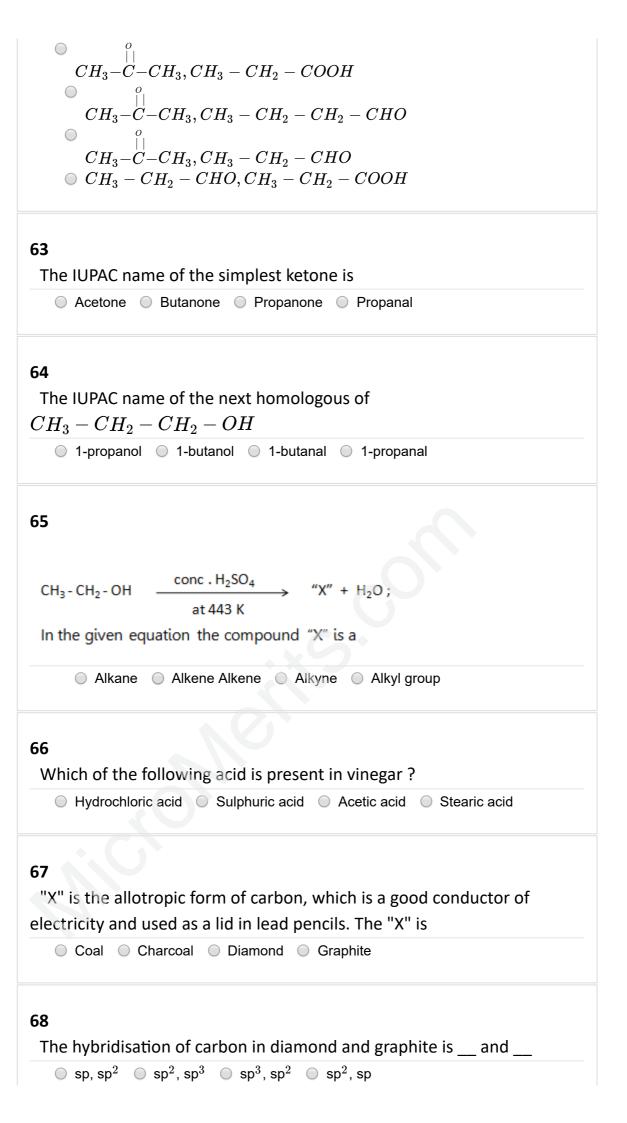
48

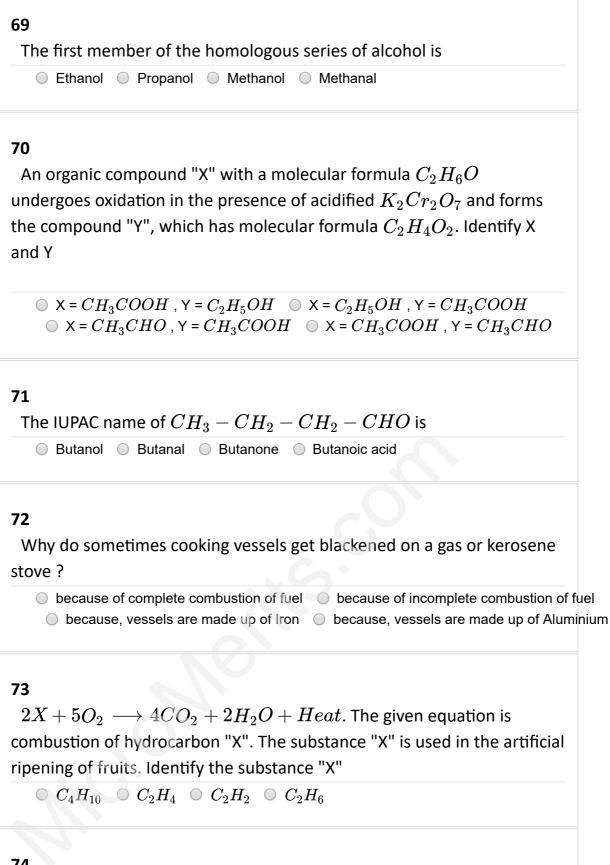
The product formed along with soap in the saponification reaction is

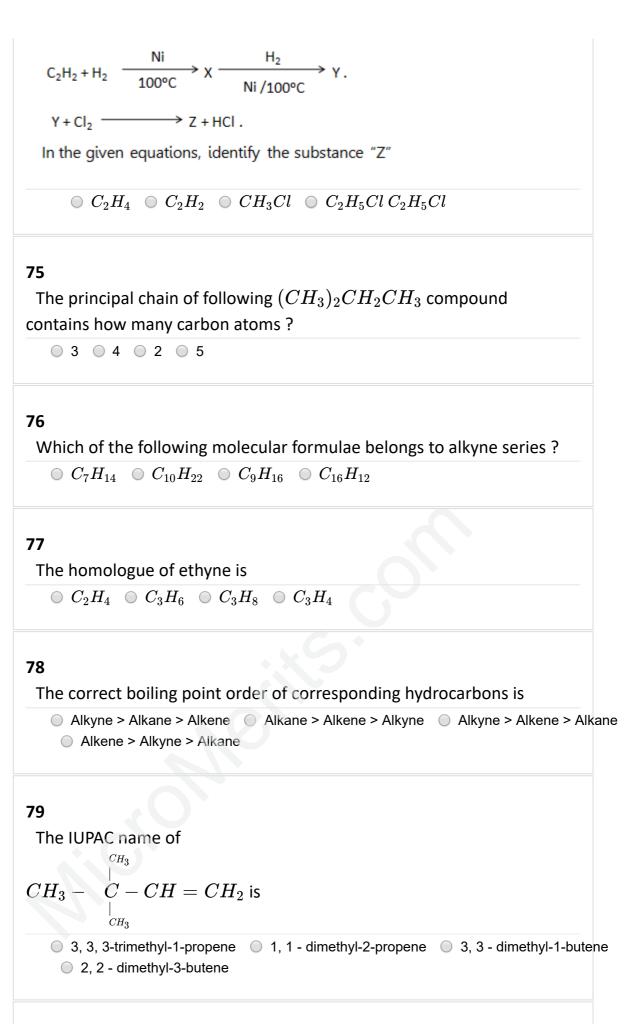
○ Fat ○ Oil ○ Glycerol ○ Glyoxal


49

A spherical aggregate of soap molecules in water is called


O Detergent O Glycerol O Easter O Micelle


50


When soap is dissolved in water, which end of the soap attracted

0 0	$CH_3COOH \ \bigcirc \ C_2H_5OH \ \bigcirc \ CH_3COOC_2H_5 \ \bigcirc \ CH_3CHO$
57	
	acid, when dissolved in water it dissociates into ions reversibly, ecause acetic acid is a
0 w	eak acid ○ strong acid ○ weak base ○ strong base
58	
Comb of	ustion of hydrocarbons is generally accompanied by the evolution
0 H	eat Light both heat and light Electricity
If 2 m we will	ne acid forms a layer on water O Water forms a layer on acid
we will	notice
If 2 m we will T	notice ne acid forms a layer on water Water forms a layer on acid
If 2 m we will T	notice ne acid forms a layer on water \bigcirc Water forms a layer on acid Formation of a clear and homogeneous solution \bigcirc Formation of CO_2 gas
If 2 m we will T	notice ne acid forms a layer on water \bigcirc Water forms a layer on acid Formation of a clear and homogeneous solution \bigcirc Formation of CO_2 gas get the following, the isomers are Butane and n-Pentane \bigcirc n-Butane and isobutane \bigcirc n-Butane and isopentation.
If 2 m we will T 60 Amon	notice ne acid forms a layer on water \bigcirc Water forms a layer on acid Formation of a clear and homogeneous solution \bigcirc Formation of CO_2 gas get the following, the isomers are Butane and n-Pentane \bigcirc n-Butane and isobutane \bigcirc n-Butane and isopentation.
If 2 m we will T 60 Amon n 61 Name air.	notice ne acid forms a layer on water \bigcirc Water forms a layer on acid Formation of a clear and homogeneous solution \bigcirc Formation of CO_2 gas generally generally the isomers are Butane and n-Pentane \bigcirc n-Butane and isobutane \bigcirc n-Butane and isopenta Butene and Propane
If 2 m we will T 60 Amon n 61 Name air.	notice he acid forms a layer on water \bigcirc Water forms a layer on acid Formation of a clear and homogeneous solution \bigcirc Formation of CO_2 gas get by the following, the isomers are Butane and n-Pentane \bigcirc n-Butane and isobutane \bigcirc n-Butane and isopenta Butene and Propane

The final product formed in the halogenation of methane is

The gas liberated when ethanoic acid reacts with active metals like sodium ?

 \bigcirc O_2 \bigcirc CO_2 \bigcirc CO \bigcirc H_2

82

Ethanoic acid reacts with sodium hydroxide and forms

○ Ethanal ○ Ethanol ○ Sodium acetate ○ Sodium formate

83

If a hydrocarbon contains 14-H atoms and 8 carbon atoms, then the hydrocarbon belongs to

○ Alkane ○ Alkene ○ Alkyne ○ Alkyl group

84

The correct order of boiling point of $C_3H_8, C_5H_{12} \ and \ C_4H_{10}$ is

$$igcirclet C_5H_{12} < C_4H_{10} < C_3H_8 \ igcirclet C_5H_{12} > C_4H_{10} > C_3H_8 \ igcirclet C_4H_{10} < C_3H_8 < C_5H_{12} \ igcirclet C_3H_8 < C_5H_{12} < C_4H_{10}$$

85

$$CH_2 = CH_2 + H_2O \xrightarrow{\text{catalyst}} CH_3CH_2OH ;$$

$$100-300 \text{ atm}$$

$$at 300°C$$

The catalyst used in the given equation is

 $\bigcirc \ Ni \ \bigcirc \ Fe \ \bigcirc \ P_2O_5 \ P_2O_5 \ \bigcirc \ {
m Chlorophyll}$

86

Identify the correct statement, when soap is used to remove dirt present on the cloth i.e., cleansing action of soap

- (i) The polar end of the soap is hydrophilic in nature and this end is attracted towards water.
- (ii) The non-polar end of the soap is hydrophobic in nature and it is

attracted towards dirt (grease (or) oil).
(iii) The molecules of soap surround t	the dirt particle at the centre of the
cluster and form a spherical structure	2.
only (i) is correct only (ii) is correct	ct O only (iii) is correct O All are correct
87	
O R - C - O - H + R' - OH	O C - O - R' + H ₂ O;
In the given equation, R, R¹ indicates	
○ Alkane group ○ Alkene group	 Alkyne group Alkyl group Alkyl group
88	
Propane-1, 2, 3 - triol is also known	as
, , ,	
Marsh gasGlycolGlycerol	
	acetic acid was added to them?
89 Which of the four test tubes contain the brisk effervescence when dilute at i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii O i & ii O ii & iv O i & iv O ii & iii	acetic acid was added to them?
89 Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii \bigcirc i & ii \bigcirc ii & iv \bigcirc i & iv \bigcirc ii & iii	acetic acid was added to them ? i) $NaCl$
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii \bigcirc i & ii \bigcirc ii & iv \bigcirc i & iv \bigcirc ii & iii \bigcirc ii & iii \bigcirc iiii when acetic acid reacts with ethyl and \bigcirc iiii \bigcirc iiiiiiiiiiiiiiiiiiiiiiiiii	acetic acid was added to them ? i) $NaCl$ alcohol, we add conc H_2SO_4 , it
89 Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii \bigcirc i & ii \bigcirc ii & iv \bigcirc i & iv \bigcirc ii & iii	acetic acid was added to them ? i) $NaCl$ alcohol, we add conc H_2SO_4 , it length of the second s
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii i & ii	acetic acid was added to them ? i) $NaCl$ alcohol, we add conc H_2SO_4 , it length of the second s
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii i & ii	acetic acid was added to them ? i) $NaCl$ alcohol, we add conc H_2SO_4 , it I Dehydrating agent, Esterification Acid, Esterification
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii i & ii	acetic acid was added to them ? i) $NaCl$ alcohol, we add conc H_2SO_4 , it length of the second s
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii i & ii	acetic acid was added to them? alcohol, we add conc H_2SO_4 , it behydrating agent, Esterification Acid, Esterification statement is ad by four other carbon atoms
Which of the four test tubes contains the brisk effervescence when dilute as i) KOH ii) $NaHCO_3$ iii) K_2CO_3 iii i & ii	acetic acid was added to them? alcohol, we add conc H_2SO_4 , it behydrating agent, Esterification Acid, Esterification statement is ad by four other carbon atoms stricity ctricity

Which of the following pairs of carbon skeletons is an example of isomers ?

$$C-C-C \text{ and } C-\frac{c}{C}-C \qquad C-C-\frac{c}{C} \text{ and } C-C-\frac{c}{C}-C \qquad C-C-\frac{c}{C$$

93

Which type of reaction is not shown by C_2H_4 at all ?

○ Addition○ Substitution○ Oxidation○ Combustion

94

The compound with highest boiling point is

○ n-hexane ○ n-pentane ○ 2,2-dimethyl propane ○ 2-methyl butane

95

The double bond formed between two carbon atoms in C_2H_4 molecule due to the sharing of

○ 2 electrons ○ 6 electrons ○ 4 electrons ○ 8 electrons

96

$$CH \equiv CH + H_2 \xrightarrow{Ni} A \xrightarrow{\text{Water vapour}} A \xrightarrow{\text{P}_2O_5 + 100-300} B \xrightarrow{\text{alkaline}} C \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{acidified K}_2Cr_2O_7} D$$

$$A \xrightarrow{\text{A result of the problem}} A \xrightarrow{\text{P}_2O_5 + 100-300} B \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{acidified K}_2Cr_2O_7} D$$

$$A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{P}_2O_5 + 100-300} B \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{MnO}_4} C \xrightarrow{\text{A cidified K}_2Cr_2O_7} D$$

$$A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{P}_2O_5 + 100-300} B \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{Mno}_4} D$$

$$A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}} B \xrightarrow{\text{Catalyst}} B \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}} B \xrightarrow{\text{Catalyst}} B \xrightarrow{\text{Catalyst}} A \xrightarrow{\text{Catalyst}}$$

Identify the compounds B and G

 $\bigcirc CH_3COOH, CO_2 \bigcirc CH_3CH_2OH, CO_2 \bigcirc CH_2 = CH_2, CH_3COOH \\ \bigcirc CH_3CH_2OH, Ca(HCO_3)_2 \ CH_3CH_2OH, Ca(HCO_3)_2$

$$CH \equiv CH + H_2 \xrightarrow{Ni} A \xrightarrow{Water vapour} A \xrightarrow{P_2O_5 + 100-300} B \xrightarrow{A \times MnO_4} C \xrightarrow{$$

Identify the functional group present in the compound D

○ Aldehyde○ Alcohol○ Carboxylic acid○ Ketone

98

$$CH \equiv CH + H_2 \xrightarrow{Ni} A \xrightarrow{\text{Water vapour}} A \xrightarrow{\text{P}_2O_5 + 100-300} B \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{acidified K}_2Cr_2O_7} D$$

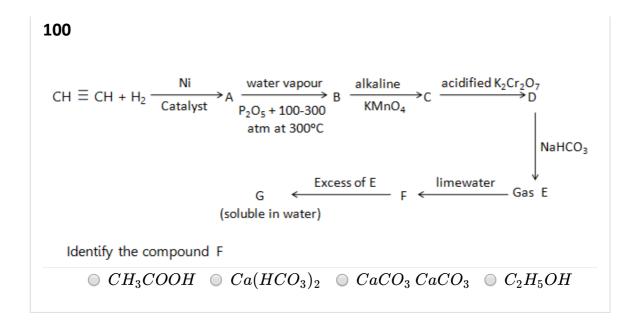
$$A \xrightarrow{\text{A water vapour}} B \xrightarrow{\text{KMnO}_4} C \xrightarrow{\text{A water vapour}} C \xrightarrow{\text{A cidified K}_2Cr_2O_7} D$$

$$A \xrightarrow{\text{NaHCO}_3} C \xrightarrow{\text{NaHCO$$

The type of reaction involved in the formation A is

- Halogenation Carboxylation Decarboxylation
- Hydrogenation Hydrogenation

99


$$CH \equiv CH + H_2 \xrightarrow{\begin{subarray}{c} Ni \\ Catalyst \end{subarray}} A \xrightarrow{\begin{subarray}{c} water vapour \\ P_2O_5 + 100-300 \end{subarray}} B \xrightarrow{\begin{subarray}{c} alkaline \\ KMnO_4 \end{subarray}} C \xrightarrow{\begin{subarray}{c} acidified K_2Cr_2O_7 \\ KMnO_4 \end{subarray}} D$$

$$\begin{subarray}{c} NaHCO_3 \end{subarray}$$

$$\begin{subarray}{c} G \end{subarray} \xrightarrow{\begin{subarray}{c} Excess of E \\ (soluble in water) \end{subarray}} F \xrightarrow{\begin{subarray}{c} limewater \\ Gas \end{subarray}} Gas \end{subarray}$$

The compound formed along with gas E, when the substance D reacts with $NaHCO_3$ is

 $\bigcirc \ C_2H_5ONa \ \bigcirc \ CH_3COONa \ CH_3COONa \ \bigcirc \ H_2 \ \bigcirc \ O_2$

MicroMerits.com is an innovative practice and assessment platform. The methodical practice sharpens your talent.

We provide Practice worksheets and Practice papers based on CBSE syllabus. These printable Worksheets and Practice Papers are available for FREE download

Helps students to score very good marks in their board exams. Also useful for students taking part in various competitions like NTSE, Olympiads, KVPY and for future JEE/NEET exams